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Abstract 

The generative adversarial networks seem to work very effectively for training generative deep neural networks. 
The aim is to generate Nepali Handwritten letters using adversarial training in raster image format. Deep 
Convolutional generative network is used to generate Nepali handwritten letters. Proposed generative adversarial 
model that works on Devanagari 36 classes, each having 10,000 images, generates the Nepali Handwritten Letters 
that are similar to the real-life data-set of total size 360,000 images. The generated letters are obtained by 
simultaneously training the generator and discriminator of the network. Constructed discriminator networks and 
generator networks both have five convolution layers and the activation function is chosen such that generator 
networks generate the image and discriminator networks check if the generated image is similar to a real-life image 
dataset. To measure the quantitative performance, Frechet Inception Distance (FID) methodology is used. The FID 
value of 18 random samples, generated by networks constructed, is 38413677.145 . For a qualitative measure of 
the model let the reader judge the quality of the image generated by the generator trained model. The Nepali letters 
were generated by the adversarial network as required. The evaluation helps the generative model to be better and 
further enables a better generation that humans have not thought of. 

 

Keywords: Nepali Handwritten Letter Generation, Neural Network, Machine Learning, Deep Convolutional 
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1. Introduction 
 
A generative adversarial network (GAN) is a class of 
machine learning frameworks designed by Ian 
Goodfellow (Goodfellow, 2014) and his colleagues in 
2014. Two neural networks contest with each other 
in a game. Given a training set, this technique learns 
to generate new data with the same statistics as the 
training set. For example, a GAN trained on 
photographs can generate new photographs that look 
at least superficially authentic to human observers, 
having many realistic characteristics. 
 
Though originally proposed as a form of generative 
model for unsupervised learning, GANs have also 
proven useful for semi-supervised learning, fully 
supervised learning, and reinforcement learning. 
 
We use unsupervised learning; one trains the 

machine with unlabeled data. This allows for 
producing output based on previous experience. This 
implementation maps the input variables to an output 
variable and uses an algorithm to learn the 
relationship between them. This involves learning to 
generate image data that is similar to the real dataset 
of image. In this implementation, Devanagari 
characters' image dataset are fed into the GAN as 
input. The network will then try to generate the 
characters as accurately as possible. 
 
2. Literature Review 
The major research paper for GANs was submitted 
by Ian Goodfellow (Goodfellow, 2014) in 2014. In 
this paper, he used the MNIST (Modified National 
Institutes of Standards and Technology) dataset for 
testing his proposed framework and generated the 
handwritten digits. The basic structure of GAN that 
he proposed is shown in Fig. 1. In which, there is 
simultaneous training of generator and discriminator 
networks. The generator network is responsible for 
generation of image and discriminator network 
estimates the probability of generated samples are 
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similar to real dataset. This project's basic principle 
inspired from two player game theory.  In his result, 
he made no claim that the resulting samples are better 
than samples generated by existing methods, but 
believed that these samples are at least competitive 
with the better generative models. 

 
Fig. 1 Basic GAN Model. 

Another paper that actually uses deep convolution in 
generative adversarial training to overcome 
drawbacks of simple GAN and to show different new 
things that are possible CNN with unsupervised 
learning. They observed the huge adoption of 
convolution networks in supervised learning 
applications. In order to fill the gap between CNN 
and unsupervised learning, they proposed a model 
called DCGAN (Radford et al., 2015) that has certain 
architecture constraints. They analyzed and 
explained why GAN is known for being unstable to 
train. 

Generation of Bangla Handwritten Digit using the 
DCGAN architecture was carried out by Mustapha et 
al. (2021). In this paper, to achieve the goal they used 
the three most popular Bangla handwritten datasets 
CMATERdb, BanglaLekha-Isolated, ISI and their 
own dataset Ekush. The proposed DCGAN that 
successfully generates Bangla digits with higher 
efficiency, which makes it a robust model to generate 
Bangla handwritten digits from random noise. The 
losses in each dataset are shown below along with the 
output. Our project is inspired from this work. The 
paper is about generating Arabic Letters using 
DCGAN architecture. The dataset is composed of 
pictures for 33 alphabets from ’alef’ to ’yeh’, 480 
images per character handwritten with image size of 
32x32. 

Wu et al. (2020) uses DCGAN architecture to 
generate the Tomato leaf disease image using a given 
real Tomato leaf diseases dataset so that the total 
dataset of diseased leaf dataset becomes large. This 
technique is called dataset augmentation using 
DCGAN. The traditional augmentation techniques 

like flip, translation and rotation. Sometimes do not 
generalize the dataset. They proposed a new method 
called DCGAN based augmentation. Using this 
technique, they obtained high model identification 
accuracy then while using dataset with traditional 
augmentation methods. They observed that DCGAN 
gives better convincing results than the t-Distributed 
Stochastic Neighbor Embedding and visual Turing 
Test. 

Another approach is the conditional version of 
generative adversarial networks (Mirza & Osindero, 
2014). They feed the condition value to the generator 
and discriminator network. Class labels condition is 
used in this. The network is forced to train the 
network such that only conditioned values are 
generated. 

Nvidia scientists (Karras et al., 2017) found a new 
way to control the generator output. They use a little 
different approach for training the GAN network. 
They use the idea in which the generator and 
discriminator network is progressively growing. 
Initially they train the computer to learn lesser 
complex patterns, progressively the complexity 
increases. They use low resolution image generation 
techniques and as iteration goes on the network such 
that the generator network can generate high 
resolution images. 

Although we can generate data that is similar to the 
real dataset using GAN, we have no control over 
generator output. The styleGAN (Karras, 2017) based 
approach uses progressive training GAN and gives 
fine control over generator output. Although the 
styleGAN is a great research in the field of GAN, 
styleGAN2 (Karras et al., 2020) was published in 
2020 that discusses more details about improvement 
of generator output and shows application of such a 
model. The styleGAN2 is an improvement on 
styleGAN1. Ian Goodfellow proposed another paper 
(Goodfellow, 2016) that gives the answer of why 
GAN is worth studying, how the GAN generative 
model works, comparison with other models, 
research frontiers in GAN, state-of-the-art image 
model and more. 

There is plenty of research in the area of GAN. 
However, it has a limitation when the goal is for 
generating a sequence of tokens. SeqGAN (Yu et al., 
2017) is responsible for sequential data generative 
GAN. 

A learn transformation between two image 
distributions, another GAN approach is used called 
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cycleGAN (Chu et al., 2017). This GAN learns to 
transfer information from one source distribution into 
another source distribution dataset and can be 
retrieved back and form a cycle thus called 
cycleGAN. GlyphGAN (Hayashi et al., 2019) 
approach is used for the different font generation. 
Using this technique, generation of different 
consistent fonts becomes easier.  

A new GAN is proposed to upsample images from 
lower resolution to high resolution is called NU-GAN 
(Kumar et al., 2020). Another GAN (Kovalenko, 
2017) was proposed to resample the audio from lower 
sampling rate to higher sampling rate. Many other 
techniques that help in the tuning of the GAN 
networks are also proposed there (Shmelkov et al., 
2018). Ian Goodfellow (Goodfellow, 2016) shows all 
the possible things that are necessary to perform with 
GAN and shows plenty of applications of GAN in 
near future.  

There are various drawbacks of AI and GAN which 
are also there and are a serious concern for many 
scientific researchers explained in the paper 
(Brundage et al., 2018) and paper (Maas et al., 2013). 
Using the GAN architecture, there is audio 
generation (Liu et al., 2020) and video generation 
techniques are also available. 

3. Problem Description 
 
The main objective is to generate Nepali Handwritten 
letters using a generative adversarial network (GAN). 
There is lots of work going in the field of 
unsupervised learning. Different scientists from 
different countries use DCGAN architecture to 
generate their own alphabets for different languages.  
So, we decided to apply the GAN architecture on 
Nepali Handwritten characters. 
 
4. Dataset 
We found the dataset of Nepali handwritten letters on 
the internet prepared by Ashok Kumar Pant and his 
colleague in the UCI machine learning repository 
(Acharya et al., 2015). This consists of 46 classes 
each class having 10000 images of resolution 32X32. 
We upsample the resolution with the cv2 library to 
make the resolution 64X64 then we perform some 
transformation on it to make it usable and 
understandable for our model. 
 

5.  Methodology 

We developed a Nepali Handwritten letter Generator 

by building the GAN model. Then we pass the 
training data-set into the model and finally, after 
training it can output the realistic Nepali Handwritten 
letter. Here, the diagram consists of the discriminator 
model and generator model as represented by gray 
red and light blue color respectively. 

 
Fig. 2 Discriminator model used for the present 

study 
 

 
Fig. 3 Generator model used for present study 

 

Fig. 2 is the discriminator model architecture and Fig. 
3 represents generator model architecture. 
Discriminator consists of five convolution layers and 
the generator network also consists of five 
convolution layers. Following topics describe all the 
algorithms and models used in the project in detail. 

5.1. Model Development 

We attempted to make the model through the GAN 
model which was based on the Ian Godfellow model, 
but due to the failure in expectation of desired output 
using this model. We decided to use convolution 
techniques to build the network since we have seen 
its great results with image dataset. We chose 
DCGAN that used a convolutional neural network 
rather than a densely connected artificial neural 
network. PyTorch library is used in the process of 
developing the GAN model. Pickle is used for data 
storage and retrieval. The generator and discriminator 
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are defined to train the model. Firstly, the 
discriminator is defined with five layers. Along all 
the layers, they have kernel size of four, stride two 
and padding of one for all. Leaky-ReLU is used as an 
activation function for the first four layers and 
sigmoid is used for the last layer. The layer is 
obtained as (Nx1x1x1). Secondly, the generator is 
defined with five convolutional layers. Along all the 
layers, they have kernel size of four, stride two and 
padding of one for all except the first. ReLU is used 
as an activation function for the first four layers and 
tanh is used for the last layer. We obtain the output in 
the form of (N x channels_img x 64 x 64). Then the 
hyper parameters are defined. The hyper parameters 
are learning rate, batch_size, image_size, 
channel_image, channel_noise, number_of_epochs 
and number_of_pixels. The channels for 
discriminator and generator are defined 

Afterwards, datasets are loaded. And the numpy array 
is converted to tensor form. The datasets are filtered. 
And feature scaling is done to get the required 
dimension of the image. The optimizers are set up as 
Adam optimizers and training is done to get the 
model to perform the desired work. Then the loaded 
model is saved to get the desired output 

5.2. Model Architecture 

 
Fig. 4 DCGAN architecture in code 

For model development of DCGAN we need to 
develop two CNN networks called discriminator 
network and generator network. In the discriminator 
network with five convolution layers, Leaky-ReLU 
has an activation function except at the final layer to 
avoid a vanishing gradient problem. For the output 
layer of the discriminator network we use sigmoid as 
activation function and for generator network we use 
tanh as activation function for last layer output. The 

generator network consists of a five convolution 
layer. The summary of our model architecture we 
used is shown in Fig. 4. 

5.2.1. Generative model 

The input to the generator is typically a vector or a 
matrix which is used as a seed for generating an 
image particularly size of 256. Once again, to keep 
things simple, we’ll use a feed forward neural 
network through the generator CNN layers, and the 
output will be a batch of 64 images, which consist of 
each image of size 64×64 pixels image. Since, 
training in deep learning works with a batch of 
images, we send a batch of image data to the model 
for training. This is the random input to the Generator 
model and output is an image of dimension 64x64. 
This is a Generator Network Model. We use the 
tanh() activation function for the output layer of the 
generator. Note that since the outputs of the tanh() 
activation lie in the range [-1,1], we have applied the 
same transformation to the images in the training 
dataset. Let’s generate an output vector using the 
generator and view it as an image by transforming 
and de-normalizing the output. 

𝐿(𝐺) = min[𝑙𝑜𝑔-𝐷(𝑥)] + 1 − 𝑙𝑜𝑔-𝐷[𝐺(𝑧)]         (1) 

Equation (1) is the loss function for the generator 
network based on the discriminator output. And 
generators need to minimize its value as training goes 
on. That tells us that the generator is learning to 
generate the image that is similar to the real image. 
This formula tells us the difference between the 
discriminator output for real and synthesized images 
should be minimum. 

The ReLU activation is used in the generator except 
for the output layer which uses the Tanh function. We 
observed that using a bounded activation allowed the 
model to learn more quickly to saturate and cover the 
colour space of the training distribution.  

Within the discriminator we found the leaky rectified 
activation to work well, especially for higher 
resolution modelling. 

In between each convolution layer we call the 
normalization function that is standard practice to get 
better and less failure case outcomes. 

5.2.2. Discriminative model 

The discriminator takes an image as input, and tries 
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to classify it as “real” or “generated”. In this sense, 
it’s like any other neural network. While we can use 
a CNN for the discriminator, we’ll use a simple feed 
forward network through the CNN layers to get the 
discriminated output value. We send a batch of 
images of size 64x64 to the discriminator. Input for 
the discriminator model will be of 64 images. This is 
a Discriminator Network Model. We use the Leaky 
ReLU activation for the discriminator. The output of 
the discriminator is a single number between 0 and 1, 
which can be interpreted as the probability of the 
input image being fake, i.e. generated. 

𝐿(𝐷) = max[𝑙𝑜𝑔-𝐷(𝑥)] + 1 − 𝑙𝑜𝑔-𝐷[𝐺(𝑧)]      (2) 

Here the discriminator needs to maximize Equation 
(2) function. And based on this value the model 
knows how to learn about generation of images. 
Unlike the regular ReLU function, Leaky ReLU 
allows the pass of a small gradient signal for negative 
values. As a result, it makes the gradients from the 
discriminator flow stronger into the generator. 
Instead of passing a gradient of 0 in the back-prop 
pass, it passes a small negative gradient. 

5.3. Training 

Finally, now that we have all the necessary parts of 
the GAN framework defined, we can train it. The 
training GANs is somewhat of an art form, as 
incorrect hyperparameter settings lead to mode 
collapse with little explanation of what went wrong. 
Here, we will closely follow Algorithm 1 from 
Goodfellow’s paper (Goodfellow, 2014), while 
abiding by some of the best practices shown in 
ganhacks. Namely, we will construct different mini-
batches for real and fake images, and adjust G’s 
objective function to maximize 𝑙𝑜𝑔-7𝐷[𝐺(𝑧)]8. 
Training is split up into two main parts. Part 1 updates 
the Discriminator and Part 2 updates the Generator. 

The goal of training the discriminator is to maximize 
the probability of correctly classifying a given input 
as real or fake. In terms of Goodfellow (Goodfellow, 
2014), we wish to “update the discriminator by 
ascending its stochastic gradient”. Practically, we 
want to maximize 𝑙𝑜𝑔-𝐷(𝑥) + 𝑙𝑜𝑔-(1 − 𝐷[𝐺(𝑧)]. 
Due to the separate mini-batch suggestion from 
ganhacks, we will calculate this in two steps. First, 
we will construct a batch of real samples from the 
training set, forward pass through D, calculate the 
loss 𝑙𝑜𝑔-𝐷(𝑥), then calculate the gradients in a 
backward pass. Secondly, we will construct a batch 

of fake samples with the current generator, forward 
pass this batch through D, calculate the loss 
𝑙𝑜𝑔-71 − 𝐷[𝐺(𝑥)]8, and accumulate the gradients 
with a backward pass. Now, with the gradients 
accumulated from both the all-real and all-fake 
batches, we call a step of the Discriminator optimizer. 

As stated in the original paper (Goodfellow, 2014), 
we want to train the Generator by minimizing 
𝑙𝑜𝑔-71 − 𝐷[𝐺(𝑧)]8 to generate better fakes. As 
mentioned, this was shown by Goodfellow 
(Goodfellow, 2014) to not provide enough gradients, 
especially early in the learning process. As a fix, we 
instead wish to maximize 𝑙𝑜𝑔-7𝐷[𝐺(𝑧)]8. 

In the code we accomplish this by: classifying the 
Generator output from Part 1 with the Discriminator, 
computing G’s loss using real labels as GT, 
computing G’s gradients in a backward pass, and 
finally updating G’s parameters with an optimizer 
step. It may seem counterintuitive to use the real 
labels as GT labels for the loss function, but this 
allows us to use the log(x) part of the BCELoss 
(rather than the 𝑙𝑜𝑔-(1 − 𝑥) part) which is exactly 
what we want. 

 
Fig. 5 Loss graph of generator and discriminator 

A GAN can have two loss functions: one for 
generator training and one for discriminator training. 
In the loss schemes we'll look at here, the generator 
and discriminator losses derive from a single measure 
of distance between probability distributions. In both 
schemes, however, the generator can only affect one 
term in the distance measure: the term that reflects 
the distribution of the fake data. So, during generator 
training we drop the other term, which reflects the 
distribution of the real data. 

The most popular graph in GAN based networks is 
loss graph, where we plot discriminator loss (orange) 
and generator loss (blue) while training the network. 
Here we use the Binary Cross Entropy Loss function. 
We can clearly observe in Fig. 5, initially for 
untrained networks the generator has highest loss 
because it is not trained yet. But as iteration goes on, 
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the generator network learns how to generate images 
which are similar to the real data-set, the loss of the 
generator gradually decreases. In case of a 
discriminator the loss lies between 0 to 1. 

6. Results and Discussions 

 

Fig. 6 Synthesized “म”  
 

 
Fig. 7 Synthesized Nepali handwritten letters 
 

The Nepali letters were generated as required. Those 
Nepali letters were clear and understandable. We use 
the Frechet Inception Distance (FID) method to do 
quantitative analysis. Using this method, we get the 
FID distance of 18 random samples is 38413677.145. 
We obtained the exact output of the Nepali write text 
generation. Fig. 6 is an image of “म” generated by 
our generator network.  
 
Fig. 7 shows 18 random samples generated by 
generator while Fig. 8 is 18 random real Nepali 
Handwritten letters. The result shows that the 

generated sample is quite similar to the handwritten 
real sample. That means our generator network is 
well trained. 

 

 
Fig. 8 Real Nepali handwritten letters 

 
7. Conclusions and Recommendations 
 
We demonstrated that generative adversarial 
networks, and, their deep convolutional variants, 
function exceptionally well as generative models. We 
described DCGAN model implementations and 
showed the realistic Nepali handwritten letter 
generation. 
 
This study successfully demonstrates the 
implementation of DCGAN model on real-life 
datasets. Even though the generated characters were 
noisy, further fine tuning can be done to give 
significantly better results.  Furthermore, our model 
architecture can be modified and trained to generate a 
new kind of Nepali calligraphy. The DCGAN model 
was trained for 5625 iterations. At each iteration, the 
output of the model was stored. Despite the noise, the 
generated characters were readable to the human eye. 
 
Therefore, generative models offer more 
representational power than their discriminative 
counterparts. We foresee great future success with 
GANs, DCGANs, and generative models in general. 
Our recommendation after doing hand written letter 
generation using DCGAN project are: 

 
• Generation of high-quality handwritten letters 

with SeqGAN 
• Font generation using GlyphGAN on Nepali 

Handwritten letters. 
• Recognition of generated letters by a child so that 

we can test the child on generated character. 
• Development of other artistic DCGAN models by 

replacing the dataset. 
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• DCGAN based Data Augmentation technique 
• Realistic result can be possible with Progressive 

GAN, etc. 
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