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Abstract

Magnetic Resonance Imaging (MRI) images reveal unique abnormal patterns in brain tumors. These patterns play an
important role in diagnosis and therapy planning. This study proposed a new model that combines Convolution Neural
Network (CNN) and Parameterized Variational Quantum Circuit (VQC) to better diagnose and categorize brain tumors. The
model extracted features from MRI images using pre-trained systems such as VGG16, VGG19, and ResNet-18. Among
these models of CNN, the base model was selected as VGG16 for feature extraction which yield better performance. The
features were subsequently reduced via an affine transformation and passed through a VQC for the hybrid model. The VQC
used quantum superposition and entanglement as tools for categorization. The hybrid model performed better than base
model due to the representation of feature in large space called Hilbert space. Using n qubit of quantum, 2" states were
represented in the Hilbert space. Using VQC, the complex high dimensional relationship of features was learnt and also the
performance of the hybrid model was optimized by integrating VQC to VGG16. The experiment was done integrating the
pennylane simulator with pytorch.
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1. Introduction is high-risk glioma. Overgrowth of brain cells in the pitu-
itary gland of the brain results in pituitary tumors. There-
fore, early detection is critical. Global Cancer Statistics
2020 reports that there were 251,329 cancer-related deaths
and 308,102 new instances of brain and Central Nervous
System (CNS) tumours reported in 2020 (Sung et al., ).
The National Brain Tumor Foundation (NBTF) reports that
during the past three decades, the number of people who
have died from brain tumors has increased by 300 % (EI-
Dahshan et al., ). Untreated brain tumors can result
in death. It is challenging for medical experts to identify
and treat infected people due to the complexity of brain tu-
mors. The survival rate of these individuals is significantly
impacted by early diagnosis of brain tumors and the start
of treatment. A biopsy of a brain tumor is trickier than any

A brain tumor is one of the most lethal disorders that
results from the uncontrolled growth of brain tissue inside
the skull. It could be benign or cancerous. Malignant tu-
mors can spread fast via the surrounding brain tissue, but
benign tumors grow slowly. Malignant tumors are harmful
since their growth might impact neighboring brain regions.
Approximately 70% of tumors are benign, with the remain-
ing 30% being malignant (Lapointe et al., ). Among
120 different types of brain tumors that have been discov-
ered and identified so far, the three most frequent types are
meningiomas, gliomas, and pituitary tumors. Meningioma
tumors are the most typical type of primary brain tumor in
the meninges, affecting the brain and spinal cord (Louis et

al, )- One of the most dangerous types of brain tumor other part of the body since it necessitates surgery. Scien-
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agnosis and classification of brain tumors. Machine learn-
ing methods, particularly deep learning, can be very helpful
in the analysis, segmentation, and classification of cancer
images; particularly those of brain tumors. The use of such
techniques also paves the way for the accurate and error-
free identification of tumors, allowing for their recognition
and differentiation from similar disorders. This study incor-
porated the Convolution Neural Network (CNN) and Vari-
ational Quantum Circuit (VQC) to create a hybrid model
for classification of the different class of brain tumors. The
main concept behind this is transfer learning, which reuses
previous learned model on a new problem. The main ad-
vantage of transfer learning is that it has capacity to in-
crease the performance of model with less amount of med-
ical data. Trained machine learning model is transferred
to different but closely linked problem throughout transfer
learning. Transfer learning uses the knowledge from the
early and central layer where those layers are frozen and
only remaining layers of model are retrained. In this study,
a pre-trained CNN architecture was used on brain tumor
dataset. In classification, some fully connected layer was
replaced by quantum circuit. To perform classification by
VQC, the extracted feature was passed on it.

Despite significant effort in the field of artificial intel-
ligence in this domain, medical image categorization re-
mains one of the most difficult challenges. Similarly, in
the field of brain tumor identification and classification, a
lot of progress has been made using Classical CNN with
numerous innovative approaches. Due to the unavailability
of sufficient and wide range of medical image dataset, more
accurate result from the CNN is challenging. In this study, a
new approach is used to enhance the performance of CNN
model by embedding quantum variational circuit on it for
the classification of pattern of brain tumor.

The main aim of this study is to enhance the performance
of CNN model by embedding quantum variational circuit
and to compare the performance of hybrid model with clas-
sical model.

2. Review of Literature

A brain tumor is formed when a collection of abnormal
brain cells join together. The brain tumor’s synaptic growth
is characterized by uncertainty. The potential increase of
cranial volume is difficult to limit due of its strong stiffness
and elasticity. This influence may impede human ability
to think and feel, as well as cause swelling in other bodily
parts. So far, more than 130 different forms of brain and
central nervous system tumors have been discovered, rang-
ing from benign to malignant, as well as exceedingly rare to
very common (DeAngelis, ). As a substantial amount
of medical MRI imaging data is obtained through picture
acquisition, the researchers are currently putting forth dif-
ferent machine learning algorithms to recognize brain can-

cers. These procedures are built on techniques such as
dimensionality reduction, feature extraction, feature selec-
tion, and classification. The majority of suggested machine
learning algorithms focus on the binary classification of
brain tumors.
Support vector machine (SVM) and genetic algorithm
(GA)-based binary classification of brain images was pro-
posed by (Kharrat et al., ). A discrete wavelet trans-
form (DWT) was used for feature extraction in combination
with a SVM classifier, resulting in a prediction accuracy of
98% on a dataset of 52 brain tumor images (Chaplot et al.,
). In another study, a K-nearest neighbor (KNN) clas-
sifier was applied to a dataset of 70 images, achieving a
slightly higher accuracy of 98.6% (El-Dahshan et al., ).
Deep learning is one of the most powerful techniques
in data science and artificial intelligence that are used to
train algorithms for making effective decisions based on
data. These models aim at achieving an expected network
through a reduction of the image and no loss of information
needed to predict it. For tumor segmentation, deep learning
algorithms are recognized to be the most efficient (Soomro
et al., ). Since training algorithms are able to generate
most precise results, computed tomography (CT) brain scan
is one of the most widely used Deep Learning applications
(Yeo et al., ). The concept of transfer learning was ex-
tended by performing feature extraction using pre-trained
deep learning models, followed by classification through an
embedded quantum variational circuit. This quantum trans-
fer learning approach demonstrated effective classification
of high-resolution images (Mari et al., ). CNN offers
a segmentation-free approach that does not need manually
created feature extractor methods. As a result, various CNN
architectures have been suggested by various researchers.

3. Methodology

Feature extraction and claasification play a vital part
in developing a model. Pretrained models were chosen in
the methodology in such a way that they deliver the best
features by implementing different pre-trained models. In
a hybrid model, the quantum layer was embedded in the
classification layer known as the fully connected layer of
the best feature extracted pre-trained model. Here, Figure
1 represents the work flow and how the system works in
classification. Algorithm of system workflow:

» Pre-processed medical datasets were used as input for
a model that had already been trained to extract fea-
tures which was resized to 224 x 224 pixels.

* The features were extracted using transfer learning
with a pre-trained model of CNN. All layers were
frozen, with the exception of final fully connected
layer and the quantum layer in order to prevent the
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weights on these layers from changing during model
training.

 Linear Layer also known as pre-processing layer con-
verts the 4096-feature vector into required dimension
by utilizing affine transformation and Rectified Lin-
ear Unit (ReLU) as activation function to achieve non-
linearity.

* In Quantum layer: All the qubits were initialized from
0> state.

— Hadamard gates were used to embed the feature
elements in the quantum circuit, bringing all of
the quantum bits into a state of superposition.
Rotational Y gate were used to rotate the qubit
by the angle of the input feature. The quantum
vector were created by the embedding layer from
the classical vector.

— Learnable parameters were trained in the VQC
utilizing the rotation around y-axis gate sequence
and controlled NOT gates for entanglement.

— All qubits in the measuring layer were measured
using a Pauli-z matrix to determine the present
state of the qubit. Following measurement, quan-
tum data were transformed into classical data.

 Following measurement on the classical register, the
output from the quantum layer were transmitted to the
linear layer, which serves as the model’s final predic-
tion layer.

* The loss function used as categorical cross entropy,
and Adam optimizer opted to update the model’s
weights at every training step, and a scheduler is con-
figured in the model to decay the Learning Rate (LR)
by gamma with each step size.

e The model was trained using number of epochs and
different quantum depths and number of qubit as
hyper-parameters.

3.1. Data Description

A total of 3264 Tl-weighted, contrast-enhanced MRI
images comprised the data that utilized image-based dataset
.There were 500 images of a healthy brain in this collec-
tion, 937 images of meningiomas, 901 images of pituitary
tumors, and 926 images of gliomas. These dataset are pub-
licly available and taken from kaggle. These dataset were
verified and validated by (Saeedi et al., ) for the detec-
tion of MRI based brain tumor using CNN. In this study,
dataset were splitted into training, validation and testing set
in the ratio of 0.75, 0.15 and 0.1 respectively for training
and evaluation of the model. Figure 2 represents the sample
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Figure 1. System Block Diagram

image of brain tumor pattern and normal image used for the
classification.

3.2. Hybrid Classical Quantum Model

The proposed model consists of thirteen layers of con-
volution from a pre-trained vgg16 model for feature extrac-
tion, followed by three fully connected layers for classifica-
tion. The VQC was embedded into the second layer of the
fully connected layer of VGG16. The model was trained by
freezing the trainable parameter except the last layer of fully
connected layer. Following the first fully connected layer,
the feature map was reduced via an affine transformation to
input the number of qubits used in the Quantum layer. The
reduced features were made non-linear by the ReLU acti-
vation function. The final linear layer was responsible for
predicting the class of abnormal pattern.

3.3. Quantum Layer

In quantum computers, data can either be represented by
asingle 1 or a single O or by a single 1 and a single 0 simul-
taneously. Superposition, a form of quantum computing,
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(b) Pituatory

(c) Normal

(d) Glioma

Figure 2. Sample image of Meningioma tumor, Pituatory
tumor, Normal brain and Glioma tumor

is the coexistence of a 1 and a 0. The core components of
quantum computers are qubits, or quantum bits. The ground
states |0> and [1> are combined into linear vector repre-
sentations of the qubits. The<bra | ket> notation also called
Dirac notation is used to identify quantum systems. A qubit
can be mathematically represented as in Equation ( 1).

W >=al0 > +8[1 > (1

Where, [¢)> represent the state of qubit, [0>and |1 > are
two orthogonal vectors.

0> — H > = m L= {Z] @

When a qubit is measured, it will either measure as a [0>
or |1>. These probabilities show how likely it is to measure
|0>or [1>. Bloch’s sphere is a typical method of a qubit
representation which can be sphere of unit radius.The outer
sphere points on the Z axis, represented by the vectors |0>
and |1>. Only measurements of |[0> and |1> will be used
in this study because we will only be measuring against the
Z-axis. Quantum gates are used to change quantum states,
whereas quantum states are in function of encoding data.
Quantum gates allow for the conversion of one quantum

state into another. VQC was used in fully connected layer
as a fine tuning layer for classification. It consists of three
layers i.e Data embedding, Quantum circuit and Measure-
ment layer which is shown in Figure 3. Data encoding was
done using the concept of amplitude encoding method. In
amplitude encoding method, classical data i.e. feature vec-
tor extracted from pre-trained model were converted into
quantum data i.e. n qubits were used to represent 2" states.
In VQC, number of depth of linear CNOT gate and RY-gate
was used. A number of depth is the number of linear layer
of CNOT and RY gate used in QVC. CNOT gate is used to
create the entanglement of qubit.

After various gate operations, the final state of qubit is
determined using quantum measurement. The measuring
layer of a quantum circuit behaves like a convolution neu-
ral network’s non-linear activation function. Pauli-Z mea-
surement is used to obtain the expected value following a
quantum measurement. Expectation values were collected,
and these values were fed into the final prediction layer of
the classical linear layer. Pauli-Z measurements have an an-
ticipated value range of -1 to 1. The state of qubits were
collapsed into a single state during quantum measurement.
There is no need to include an activation function for non-
linearity in a hybrid model that uses quantum measurement.
The function of non linearity was present in quantum mea-
surements.

Quantum layer

Virtual
Quantum

Classical Classical

Circuit

Figure 3. Variational Quantum Circuit

3.4. Amplitude Encoding Method

Amplitude encoding method is another method used to
encode the classical feature into quantum circuit. A vec-
tor of length x is encoded via amplitude encoding, creating
N distinct amplitude levels represented by n-qubit quantum
state with n = logo(N):

N
lz >= Zmi|i> (3)

where |¢> is the computaional basis of hilbert space. In am-
plitude encoding method, the classical feature is amplitude
in quantum circuit. Hence the amplitudes must follow the
condition of normalization such that |z|? = 1. For instance:
=3]

o=

[ I
[

1
2

=
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The state vector |x) can be represented as:
1 1 1 1

== -101) — =|10) — =|11

|2} = 5100) + 5101) — S [10) — S[11)

In the above mentioned equation, 4 state are represented
by 2 qubits and summation of the square of amplitude of
quantum state must be equal to 1.

Using the basic concept of amplitude encoding method,
the quantum features were encoded. From the second layer
of fully connected layer, 16 features were encoded just us-
ing 4 qubit. i.e 24=16. That means 16 state of quantum
are represented by 4 qubits. Before feeding into the quan-
tum circuit, normalization of 16 fatures was done such that
their square of summation is equal to one. Using 4 qubit
of VQC, 4 expectational value after quantum measurement
were obtained. Quantum entanglement is the phenomenon
when two quantum states interact in a way that prevents the
quantum states from being described independently of one
another. Typically, this implies that the outcome of a mea-
surement on one qubit reveals information about the other.
Controlled operation using Controlled Not (CNOT) gates
can be used to entangle qubits. The CNOT gate operates
on two qubits and accepts two inputs, namely a controlled
qubit and a target qubit. The general expression of CNOT
gate for matrix representation can be defined by Equation
4).

CNOT = Z linput; >< output;| 4)
J

The CNOT gate matrix of two qubit operation is represented
as:

CNOT = ®)

O O O
OO = O
o= OO
—_— o O O

It is necessary to evaluate the expectation values of those
states in order to measure the qubit state following its trans-
formation via quantum gates, including a number of CNOT
gates. The anticipated value of the state is assessed after
N times of repeated measurement. A measuring operator is
employed with the Pauli Z gate. The general expression of
expectation value of 1) state is represented in Equation (6).

< Z >=<yY|ZPY > (6)
4. Results and Discussions

The Experiment was done using hyper-parameters men-
tioned in Table 1. The best feature extractor model was
found as VGG16 among VGG19, VGG16 and Resnet-18
(Khaliki and Bagarslan, ) and used as base model of
feature extraction for hybrid model. After that, Classical-
Quantum model with same hyper-parameters was imple-
mented for the classification of brain tumor.

Table 1. Hyper-parameter

Hyper-parameters Remarks
Number of epoch 20
Batch size 8
Learning rate 0.001

Categorical cross entropy
loss function
Adam optimizer
0.9 per every 10 epoch

Loss function

Optimizer
Gamma LR schedular

In hybrid model, Parameterized Quantum circuit was
embedded on second layer of fully connected layer. After
the quantum circuit had been introduced, two new hyper-
parameters for the hybrid model were added: the quantum-
depth and the number of qubits. In this experiment, the 4-
qubit quantum circuit was developed and 2 layer of entan-
glement was made using CNOT gate. Setting the hyper-
parameter mentioned in the Table 1 , experiment of hy-
brid classical-quantum model was carried out. Here quan-
tum circuit was implemented to enhance the performance of
model obtained from previous base model. Quantum circuit
was embedded after the second fully connected layer. In
Quantum circuit, superposition and entanglement operation
was done using hadamard gate and CNOT gate respectively.
Using quantum entanglement process, the model learnt the
complex high dimensional feature which is the advantage
of quantum over classical model. Model was trained with
15 number of epochs where loss gradually decreased and
converged as shown in Figure 4. In the same manner, the
training accuracy and validation accuracy were smoothly in-
creased and found to be 87.67% and 89.84% respectively as
shown in Figure 5.

Training vs Validation Loss

—e— Training Loss
Validation Loss

0.7 1

Loss

0.5

0.44

0.3

2 4 © 8 10 12 14 16 18 20
Epoch

Figure 4. Loss Curve
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Training vs Validation Accuracy
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Figure 5. Accuracy Curve

4.1. Comparison of Models

From the comparison of chart performance of hybrid
model shown in Table 2, the overall performance of hybrid
model using amplitude encoding method was found better
than CNN model. Due to the superposition and entangle-
ment properties of Quantum, it was able to find the complex
high dimensional relationship of features. One state of qubit
get affected than another state of qubit due to entanglement.
Qubits relationship was developed due to the entanglement
using CNOT gate. In this study, variational quantum circuit
was used to enhance the performance of pre-trained model
i.e VGG16. All performance evaluation metrics like accu-
racy, precision, recall and F1-score of hybrid model of am-
plitude encoding method was better than all other experi-
ments. From these experiments, it was found that the quan-
tum circuit enhanced the performance of pre-trained model
and also, adding some hyper parameter (number of qubit,
number of depth etc) helped to optimize the performance of
the model.

Table 2. Comparison of Model Performance

Accuracy Precision Recall Fl-score
VGG19 86.950 86.275 86.208 86.241
ResNet-18 89.120 88.110 88.039 88.075
VGG16 89.360 88.720 88.824 88.772
Hybrid 90.780 89.690 89.770 89.732

5. Conclusion

From the experiment using amplitude encoding method
in quantum circuit, the model achieved better result and was
able to enhance the performance of classical CNN model.
In hybrid model, amplitude encoding method was used to

encode feature in the quantum circuit. From the experi-
ment, it was found that embedding quantum circuit in the
CNN model, the performance of pre-trained model was en-
hanced. However, it should not be concluded that the hybrid
model is better than CNN, but it was able to enhance and op-
timize the result of pre-trained model. In this study, train-
ing was hampered by the intricacy of the program created
by merging PyTorch and PennyLane Simulator; as well as
the lack of readily available genuine quantum devices. This
experiment would have taken less time to complete if it had
been carried out on an actual quantum hardware operating
parallel processing.
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