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Abstract

Voice cloning refers to synthesizing speech that mimics the vocal characteristics of a specific individual using a limited
number of audio samples. This technology finds extensive application in areas such as personalized voice interfaces,
assistive technologies, and digital content creation. However, most of the existing voice cloning systems are developed on
high-resource languages that have an upper hand on extensive annotated datasets. In contrast, this study introduces a novel
voice cloning framework specifically designed for the Nepali language, a low-resource language with limited linguistic and
acoustic resources. The proposed system uses a combination of a speaker encoder, a Tacotron2-based synthesizer, and a
WaveNet vocoder, trained through a transfer learning approach leveraging multilingual pre-trained models to mitigate the
challenges caused by data scarcity. To support this effort, we constructed a dataset of a Nepali speech corpus comprising 168
hours of audio data from 546 speakers and adapted the entire synthesis pipeline to accommodate the Devanagari script and
the phonological nuances of the Nepali language. Evaluation through both subjective and objective metrics demonstrates
the system’s effectiveness, with mean opinion scores (MOS) of 3.93 for naturalness and 3.29 for speaker similarity, as well
as a low equal error rate (EER) of 0.005. These results affirm the feasibility of achieving high-quality voice cloning in
low-resourced language contexts and establish a robust foundation for further exploration and development in Nepali speech
synthesis and voice cloning.

Keywords: Voice cloning, Low-resource language, Nepali speech synthesis, Transfer learning, Speaker encoder,
Tacotron2, WaveNet

1. INTRODUCTION
The creation of synthetic speech imitators using ad-

vanced artificial intelligence (AI) algorithms that are indis-
tinguishable from real voices is known as voice cloning.
It is commonly associated with terms like artificial voice,
speech creation, and deepfake audio. Voice cloning is a
customised process as opposed to TTS (text-to-speech) sys-
tems, which use a pre-existing technology to translate text
into spoken words. It recognises and makes use of spe-
cific vocal characteristics for different speech patterns. In
the past, TTS used two techniques: parametric TTS, which
used statistical models but produced less realistic-sounding
outcomes, and concatenative TTS, which relied on recorded
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audio but lacked emotion. Currently, AI and Deep Learning
enhance synthetic speech quality, leading to the widespread
use of TTS applications, ranging from phone systems to vir-
tual assistants such as Siri and Alexa (Daspute et al., 2020;
Zhang and Lin, 2022).

Voice cloning is the technology employed to generate
artificial voices that mimic particular people, utilized in
entertainment and support (Neekhara et al., 2021). TTS
systems have transitioned from primitive rule-based ap-
proaches that generated mechanical speech to contempo-
rary systems employing machine learning methods, like
deep neural networks, which allow for more lifelike au-
dio. Significant progress encompasses technologies such as
Google’s Tacotron (Jia et al., 2018).

Obstacles persist, especially in creating multilingual
TTS systems because of the scarcity of non-English speech
data and ethical issues related to privacy and the risk of
abuse, including the production of counterfeit audio record-
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ings. Notwithstanding these challenges, advancements have
been achieved in TTS technology, with continuous work re-
quired to improve linguistic intricacy and tackle ethical con-
cerns.

The evolution of TTS includes early rule-based systems,
concatenative synthesis, statistical parametric speech syn-
thesis, and the current use of deep neural networks (Gib-
iansky et al., 2017), all contributing to the improvement of
high-quality speech synthesis.

2. Methodology

2.1. Proposed Method:

Figure 1. Block diagram of Nepali voice cloning

The proposed method in Figure 1 of voice cloning con-
sists of three major models with initial preprocessing of data
files (Jemine et al., 2019).

2.2. Dataset Creation

The dataset was obtained via the open-source platform
OpenSLR (Kjartansson et al., 2018; Sodimana et al., 2018).
The collection contains a total of 168.34 hours of audio and
corresponding transcripts in Devanagari script. It was then
transformed further into audio multiple files of length 5-20
seconds practising proper data augmentation. At the end of
dataset preparation we had about 154,235 pairs of speech
and its transcript files. In terms of speakers count on gen-
der, the dataset was more female-biased, which we tried to
balance out by data augmentation accordingly.

Figure 2. Speech transcript pairs for training

The sample dataset for speech transcript pairs for train-
ing is shown in Figure 2.

2.3. Data Pre-Processing

Data preprocessing plays a crucial role, as each
of the three core models—encoder, synthesizer, and
vocoder—require a distinct pipeline. For the encoder, pre-
processing involves extracting raw audio samples from the
dataset and converting them into encoded mel-spectrogram
representations. The synthesizer pipeline, on the other
hand, integrates audio files, transcripts, and corresponding
utterances to generate a comprehensive dataset. This in-
cludes mel-spectrograms, audio-spectrograms, speaker em-
beddings, and metadata files containing relevant textual in-
formation. Subsequently, the processed mel-spectrograms
are transformed into a Ground-Truth Aligned (GTA)
dataset, which serves as input for vocoder preprocessing.
As illustrated in Figure 3, the complete pipeline includes
normalization of textual input and conversion of audio data
into mel-scale spectrograms and speaker-specific embed-
dings.

Figure 3. Synthesizer model data pre-processing
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2.4. Encoder:

The encoder plays a crucial role in deriving compact
and informative representations—commonly referred to as
embeddings—from input speech data. Its primary func-
tion is to encapsulate the unique traits and vocal features
of a speaker into a fixed-dimensional vector (Arik et al.,
2018). While various architectural configurations can be
employed, a widely adopted approach involves the use
of a Mel-spectrogram-based encoder (Chen et al., 2018).
This type of encoder generally comprises multiple convolu-
tional layers integrated with batch normalization and non-
linear activation mechanisms, such as the Rectified Lin-
ear Unit (ReLU). The process begins by transforming the
raw audio waveform into a Mel-spectrogram, which illus-
trates the temporal evolution of the signal’s spectral char-
acteristics. The extracted Mel-spectrogram is then passed
through convolutional layers to identify key features, which
are later condensed into a fixed-length embedding vec-
tor—typically using pooling methods or recurrent neural
networks (RNNs).

2.5. Synthesizer:

Tacotron2 (Shen et al., 2018) is a widely used archi-
tecture for text-to-speech synthesis. The architecture com-
prises a text encoder that transforms the input text into a
fixed-dimensional embedding, followed by a decoder that
produces mel-spectrograms as the acoustic representation
of speech. The encoder combines convolutional layers with
bidirectional RNNs to capture linguistic features. The de-
coder uses an autoregressive setup with stacked LSTM or
GRU layers (Fan et al., 2014) and attention mechanisms
to produce spectrograms. During training, the model mini-
mizes a loss function to align generated outputs with target
spectrograms. Tacotron2 is known for its ability to generate
high-quality synthetic speech.

2.5.1 Architecture

The Tacotron2 text-to-speech (TTS) system uses a deep
neural network composed of the following key components
(Wang et al., 2017):

• Text Encoder: Converts input text (characters or
phonemes) into hidden representations using convolu-
tional layers and a bidirectional RNN. These embed-
dings capture the semantic meaning of the input.

• Attention Mechanism: Aligns text and audio by
learning attention weights that determine which parts
of the input text are most relevant at each decoding
step.

• Decoder: Generates spectrogram frames one at a time
using the attention context and previously generated

frames. It uses an RNN and incorporates attention out-
puts to create acoustic features.

• Post-Processing Network: Converts the decoder’s
spectrogram output into a waveform using techniques
like Griffin-Lim and applies further signal processing
to enhance audio quality.

2.5.2 Alignment Plots

Alignment plots are visual tools used in speech and lan-
guage processing to visualize the correspondence between
two sequences, such as audio and its transcription (Helander
et al., 2008). Typically displayed as heat-maps, scatter
plots, or line plots, these plots map one sequence (e.g., au-
dio) on the x-axis and another (e.g., predicted transcription)
on the y-axis. They help identify errors, evaluate system
performance, and guide improvements in tasks like speech
recognition and machine translation.

2.5.3 Mel-Spectrogram

A Mel spectrogram (Habib et al., 2021) is a time-frequency
representation of an audio signal where frequencies are
scaled according to the Mel scale, reflecting human auditory
perception. It is generated by segmenting the signal, apply-
ing a Fourier transform, and mapping the resulting spectra
through a Mel filter bank. Commonly used in speech recog-
nition and audio analysis, Mel spectrograms emphasize per-
ceptually important frequencies, making them effective in-
put features for machine learning models while also reduc-
ing data dimensionality.

2.6. Vocoder:

WaveNet, (Van Den Oord et al., 2016), is a prominent
vocoder architecture extensively used in voice cloning ap-
plications. It models raw audio through conditional prob-
ability distributions using dilated convolutional neural net-
works (CNNs). When provided with a mel-spectrogram as
input, WaveNet synthesizes the corresponding audio wave-
form in a sequential, sample-by-sample manner. The ar-
chitecture’s use of stacked dilated convolutions allows it to
capture long-range temporal relationships, making it espe-
cially effective in generating speech that is both natural and
perceptually realistic.

2.7. Transfer Learning:

Transfer learning aims to enhance model generalization
and address data scarcity by leveraging knowledge from a
source domain (Mei et al., 2021). Initially, deep learning
models were trained from scratch, but performance was lim-
ited due to poor data quality and high training complexity.
To overcome these challenges, transfer learning was applied
to all three models. While a suitable pre-trained model for
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the Nepali language and voice was unavailable, a multilin-
gual model was used instead. This approach yielded sig-
nificantly better results than training from scratch, though it
required additional fine-tuning to achieve satisfactory per-
formance.

3. Result

3.1. Training Analysis

During training, the primary results observed were charts
and plots illustrating the model’s progression. While loss
and accuracy curves are typically key indicators, this audio-
based model places greater emphasis on subjective evalua-
tion, as standard metrics alone do not fully capture all rele-
vant aspects of performance.

3.2. Encoder Training

For encoder training, some of the key parameters that
were observed are listed as follows:

3.2.1 Encoder Training Loss

The encoder’s training loss is defined by an end-to-end ob-
jective function that evaluates the quality of speaker cluster-
ing in the UMAP (Uniform Manifold Approximation and
Projection) space. This is optimized using the GE2E (Gen-
eralized End-to-End) loss, which encourages embeddings
from the same speaker to cluster tightly while pushing em-
beddings from different speakers apart.

Training batches consist of multiple speakers, each with
several utterances. Specifically:

• Let N be the number of distinct speakers in the batch.
• Let M be the number of utterances per speaker.
• Let eij denote the embedding of the j-th utterance

from the i-th speaker, where 1 ≤ i ≤ N and 1 ≤
j ≤ M .

To represent each speaker, the model computes a speaker
centroid or speaker embedding, denoted as ci, by averaging
the embeddings of that speaker’s utterances.

ci =
1

M

M∑
j=1

eij (1)

This centroid in Equation (1) represents the overall
voiceprint of speaker i. The GE2E loss then uses these cen-
troids and individual utterance embeddings to calculate sim-
ilarity scores and optimize the model to produce compact,
well-separated speaker clusters.

3.2.2 Equal Error Rate for Encoder

In biometric authentication systems, one of the most im-
portant indicators of performance is the Equal Error Rate
(EER). This metric identifies the threshold at which the sys-
tem’s likelihood of incorrectly accepting an unauthorized
user matches the likelihood of incorrectly rejecting a legit-
imate one. Specifically, it balances the rates of false accep-
tances and false rejections, offering a single value that re-
flects the trade-off between the two. Lower EER values sig-
nify improved precision in verifying user identities. Table 1
illustrates the encoder training procedure and the associated
loss.

Table 1. Encoder training results
Parameters Results
Encoder Training Loss 0.02± 0.01
Equal Error Rate 0.005± 0.001

3.2.3 UMAP Projection

(a) Initial Cluster

(b) Cluster After Training
Figure 4. U-Map Projection at Different Stages of Training

UMAP (Uniform Manifold Approximation and Projection)
(Jiale and Ying, 2020) is a dimensionality reduction method
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designed for visualizing and clustering high-dimensional
data. It excels in capturing nonlinear relationships, making
it suitable for complex data distributions. UMAP projects
the data into a two-dimensional space, enabling effective
visualization as shown in Figure 4. It has been successfully
applied across various domains, including image process-
ing, genomics, and natural language processing.

3.3. Synthesizer Training

3.3.1 Attention Scaled Dot Product

In Transformer models, attention is a mechanism that al-
lows the model to weigh the importance of different in-
put tokens when processing a sequence. A commonly used
method for computing attention is the Scaled Dot-Product
Attention, which efficiently captures the relationships be-
tween tokens using vector similarity.

The attention computation is given by Equation (2):

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2)

Symbols

• Q: Query matrix — represents the set of query vectors.
Each query corresponds to a token trying to attend to
other tokens in the sequence.

• K: Key matrix — contains key vectors used to com-
pute similarity scores with queries.

• V : Value matrix — contains the actual values to be
aggregated using attention weights.

• dk: Dimensionality of the key vectors — used to scale
the dot product for numerical stability.

Working

1. Compute the dot product QK⊤ to measure similarity
between queries and keys.

2. Scale the result by 1√
dk

to prevent large values that
could dominate the softmax.

3. Apply the softmax function to obtain attention
weights (a probability distribution).

4. Multiply the attention weights with the value matrix V
to obtain the final output.

This attention mechanism enables the model to dynam-
ically focus on relevant parts of the input sequence during
processing.

3.3.2 M1 Loss

Mean Absolute Error (MAE), also referred to as L1 loss or
M1 loss, Measures the average absolute difference between
predicted and actual values; less sensitive to outliers.

The mathematical expression for MAE is given in Equa-
tion (3).

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

Symbols

• n: Denotes the total count of data samples in the
dataset.

• yi: Represents the ground truth or actual value corre-
sponding to the i-th observation.

• ŷi: Indicates the model’s predicted value for the i-th
sample.

• |yi − ŷi|: Captures the magnitude of the deviation be-
tween the predicted and actual values for the i-th in-
stance.

3.3.3 M2 Loss

Mean Squared Error (MSE), also known as L2 loss or M2
loss, Calculates the average of squared differences between
predicted and actual values; emphasizes larger errors more.

The mathematical expression for MAE is shown in
Equation (4).

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

Symbols

• n: The total count of samples within the dataset.
• yi: The true value corresponding to the i-th data point.
• ŷi: The estimated value predicted for the i-th data

point.
• (yi − ŷi)

2: The squared error between the true and
predicted values for the i-th data point.

3.3.4 Final Loss

In regression tasks, it is common to combine M1 loss (Mean
Absolute Error) and M2 loss (Mean Squared Error) to lever-
age the strengths of each—balancing robustness to outliers
with sensitivity to large errors. MAE calculates the average
absolute difference between predictions and targets, pro-
viding robustness against outliers. In contrast, MSE com-
putes the average squared difference, which places greater
emphasis on larger errors. The combined loss function in-
tegrates these properties, balancing sensitivity to large er-
rors with overall robustness, thereby improving both accu-
racy and generalization. The combined loss is defined as in
Equation (5)

Loss = MAE + MSE (5)
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Components

• (Mean Absolute Error): Measures the average mag-
nitude of errors between predicted and actual values,
offering greater resistance to outliers.

• (Mean Squared Error): Captures the average squared
error; emphasizes larger deviations more strongly.

• Loss: The total combined loss that incorporates both
absolute and squared differences.

This combined loss can help improve a model’s ability to
generalize by simultaneously accounting for both the direc-
tion and magnitude of prediction errors. Table 2 illustrates
loss and errors during training of synthesizer

Table 2. Synthesizer training
Parameters Results
Mean Absolute Error 0.2930± 0.0010
Mean Squared Error 0.0495± 0.0001
Total loss (MAE + MSE) 0.3525± 0.0100

3.3.5 Mel-spectrogram

Figure 5. Mel-spectrogram comparison: Synthesizer training

Figure 5 illustrates target and predicted mel-spectrogram
during training.

3.3.6 Alignment

Figure 6 illustrates learned alignment by the attention mech-
anism.

Figure 6. Alignment heat-map: Synthesizer training

3.4. Vocoder

Training a vocoder is a supervised process done with
pairs of synthesized mel-spectrogram from synthesizer and
raw target audio waveform. Table 3 represents the loss dur-
ing the vocoder training process.

Table 3. Results of vocoder training
Parameter Result
Vocoder Training Loss 4.095± 0.005

3.5. Metrices

A range of tools, techniques, and evaluation metrics were
utilized during model training for analysis and selection.
Similar evaluation techniques were employed to ensure the
reliability and validity of the final models and outcomes.

3.5.1 Mean Opinion Score

Figure 7. MOS (Mean Opinion Score)

The Mean Opinion Score (MOS) is a widely used subjective
metric to assess the perceived quality of audio or video sig-
nals by human listeners or viewers (“Mean Opinion Score
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(MOS) Revisited: Methods and Applications, Limitations
and Alternatives”, n.d.). In this study, MOS was derived
from responses of 124 participants—50 familiar with the
project and 70 unfamiliar—who rated 10 cloned and real
voice samples via a Google Form on a scale of 1 to 5 for
naturalness and similarity. The collected data was cleaned
using Python and pandas, where rows with more than six
NaN values were removed, and others were imputed with
the mean. After cleaning, data from 120 participants were
retained, and average scores for each sample were com-
puted as shown in Figure 7.

Table 4 presents the Mean Opinion Score (MOS) for
Naturalness and Similarity, evaluated on ten generated au-
dio samples.

Table 4. Naturalness and similarity in terms of MOS
Results

Audio Property MOS
Naturalness 3.93
Similarity 3.29

3.5.2 PESQ

Perceptual Evaluation of Speech Quality (PESQ) is a stan-
dardized metric used to assess speech quality in telecommu-
nications by comparing a degraded signal to a clean refer-
ence signal through a perceptual model that reflects human
hearing (Rix et al., 2001). The algorithm generates scores
ranging from -0.5 to 4.5, typically mapped to a MOS scale
of 1 (bad) to 5 (excellent). In this project, PESQ as shown in
Figure 8 was computed for cloned voice samples from both
the training and test datasets, yielding scores of 2.8 on vali-
dation data and 2.3 on test data. These relatively low scores
are attributed to the limited quality of the training dataset.

Figure 8. PESQ (Perceptual evaluation of speech quality)

3.5.3 U-MAP

Similar to the projection applied during training, embed-
dings for both the original and cloned voices were com-
puted and visualized after dimensionality reduction. Fig-
ure 9 presents the Uniform Manifold Approximation and
Projection plot, with multiple clusters, each cluster is repre-
sents a unique user. Each cluster is a collection of dots and
crosses; dots represent original audio, and crosses represent
generated audio. The proximity of original and generated
samples within clusters indicates the model’s effectiveness
and high accuracy in preserving speaker characteristics.

Figure 9. UMAP of multiple users and cloned audio

4. Conclusion
In conclusion, the proposed Nepali Voice Cloning sys-

tem focuses on replicating voices with Nepali-specific ac-
cents and dialects, using input text in the Devanagari script.
The system is structured around three main components:
the encoder, synthesizer, and vocoder. The speaker encoder
employs a convolutional neural network (CNN) followed
by a recurrent neural network (RNN) to convert a user’s
voice into a unique speaker embedding—a form of vocal
fingerprint used to distinguish between speakers. This em-
bedding, together with the input text in Devanagari script,
is passed to the synthesizer. The synthesizer, a modified
version of the Tacotron architecture, consists of an encoder,
attention mechanism, and decoder, and is adapted to incor-
porate speaker embeddings. It produces a mel-spectrogram,
which is then fed into the vocoder to generate the corre-
sponding audio waveform. All components are deployed
within a web application, allowing the complete system to
function seamlessly in an integrated environment.

Quantitatively, the system performs reasonably well,
achieving a Mean Opinion Score (MOS) of 3.9 for natu-
ralness and 3.2 for speaker similarity on a scale from 1 to 5.
Additionally, the Perceptual Evaluation of Speech Quality
(PESQ) score was 2.3 on the validation set and 1.8 on the
test set, with PESQ scores ranging from -0.5 to 4.5.
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