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Abstract

Hilly and mountainous areas of Nepal, with challenging terrain, young geology, and heavy monsoon rainfall, are susceptible
to landslides and slope instability. To analyze and prepare landslide susceptibility maps, this study selects a typical hilly
area, the Jugal Rural Municipality in Sindhupalchok district. Twelve factors contributing to landslides were considered,
including slope, aspect, elevation, geology, land use, proximity to roads and drainage, plan curvature, profile curvature,
NDVI (Normalized Difference Vegetation Index), soil type and rainfall. Moreover, 286 landslides were identified using
high-resolution satellite imagery and field verification as the landslide inventory. These landslides were then randomly
divided into two sets: 70% for training and 30% for validation. Bivariate statistical analysis was performed using factor
maps and the landslide inventory map. Notably, the analysis revealed a Prediction Rate (PR) of 9.35 for ’Land use’, the
highest among all factors considered. Since land use is a dynamic factor, we recommend conducting an analysis of land
use changes and their impact on landslide susceptibility. Such an assessment would be invaluable during the planning and
execution phases of development projects in Nepal’s disaster-prone regions.
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1. Introduction
Nepal has a high climate risk and is ranked 9th as per

the Global Climate Risk Index 2020, which evaluates the
impact of meteorological events on economic losses and
human fatalities (Sönke et al., 2015). The occurrence of
natural hazards like landslides is governed by triggers and
causative factors. Landslides in Nepal mainly result from a
combination of natural factors like steep slopes, fragile ge-
ology, heavy and irregular rainfall, and human factors such
as deforestation, unplanned settlements, improper land use,
and haphazard infrastructure development (Uprety et al.,
2020). In 2020, landslides caused 303 deaths, 64 people
went missing, and 226 were injured nationwide (MoHA,
2020).

Nepal experiences approximately 12,000 landslides,
both small and large-scale annually (Bhusal, 2016). Over
the past decade, data reveals an increasing trend in
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landslide-related deaths and affected families, particularly
after the 2015 earthquake and Sindhupalchok district had
the highest fatality count, with 3,575 deaths, following the
earthquake (MoHA, 2022). The district, as well as ar-
eas with haphazard infrastructure development like road
construction without proper environmental considerations,
have witnessed a noticeable surge in landslides, indicating
a clear correlation (McAdoo et al., 2018; Paudyal et al.,
2023). The Lidi landslide in Jugal in 2020 can be attributed
in part to the two days of heavy rainfall that saturated the
slopes, reducing the soil’s safety margin.

In addition to earthquake impacts, erratic rainfall, poorly
planned infrastructure, and improper farming practices
make the region more prone to landslides.

Many researchers are using susceptibility analysis as a
helpful tool for managing landslide hazards. These maps
indicate the likelihood of landslides happening in a specific
area. They are prepared by predicting landslides spatial dis-
tribution, assuming that future landslides will occur under
similar conditions as in the past (Martha et al., 2013). In
a study, the Frequency Ratio (FR) model was implemented
for landslide susceptibility mapping and was compared with
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the Logistic Regression model (Regmi et al., 2014). Differ-
ent landslide susceptibility analysis methods were evaluated
in Bagmati Rural Municipality where the FR method also
showed good results employing remote sensing (RS) and
geographic information system (GIS) techniques to iden-
tify potential landslide-prone areas in Nepal (Thapa et al.,
2022).

1.1. Study area

The Jugal Rural Municipality covers a total area of 592
km2 and is divided into 7 wards. Sindhupalchowk was
among the worst-hit districts over the years, with a total
of 289 fatalities and 685 affected families (MoHA, 2022).
The landslides continue to impact infrastructure such as hill
roads and settlements. The increased frequency of land-
slides can be attributed to growth of unplanned settlement
and unregulated infrastructure development. Location of
the study area is presented in Figure 1.

Figure 1. Location map of study area

2. Data and Methodology
The methodology of study is summarized in Figure 2.
GIS and Remote Sensing (RS) are highly effective tools

for evaluating risk and managing natural hazards, especially
when dealing with parameters with high spatial variability.
Various literature have suggested that the data set ratio of

Figure 2. Methodology of the present study

70:30 because the 70% data set is considered sufficient to
represent analysis and 30% is considered sufficient to vali-
date the model (Silalahi et al., 2019). In this study, a total
of 286 landslides were demarcated. ArcGIS 10.7 was used
as mapping software to conduct a landslide susceptibility
analysis that involved extracting data from high-resolution
Google Earth imagery and field verification to prepare the
landslide inventory map as shown in Figure 3. The dataset
used in the study is shown in Table 1.

Figure 3. a) Landslide in Pantang, b)Location of landslide as seen
in Google Earth

Computation of Landslide Susceptibility Index (LSI) re-
quires calculation including the frequency ratio (FR), in
which the causative factors and landslide inventory is used
as presented in Equation (1).

FR =
Npix(1)/Npix(2)

ΣNpix(3)/ΣNpix(4)
(1)

where, Npix(1) is the number of pixels containing land-
slide in a class, Npix(2) symbolises total number of pixels of
each class in the whole area, ΣNpix(3) is the total number
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Table 1. Dataset used for the study
Dataset Source
Landslide Inventory Google Earth Imagery,Site

verification
DEM Derived from ALOS Palsar,

Downloaded from USGS/
Raster Grid (12.5 m x 12.5
m)

Geological Map Geological Map of
1:1,000,000 scale pub-
lished by Department of
Mines and Geology

Road/Drainage Data from Survey De-
partment, Nepal. Scale:
1:100,000

Rainfall Department of Hydrology &
Meteorology, Nepal

Landuse Landsat data from USGS

of pixels containing landslide and ΣNpix(4) means the to-
tal number of pixels in the study area (Yilmaz, 2009). The
value greater than 1 indicates a higher correlation, while
values lower than 1 indicate a lower correlation. Further-
more, the relative importance of each spatial factor with the
available training dataset, called the prediction rate (PR),
was determined depending upon its degree of spatial corre-
lation with the training landslide dataset which is shown in
Equation (2).

The FR model was also applied in landslide susceptibil-
ity mapping yielding a good prediction rate of 79.14%. The
study also revealed that geology had the highest PR of 2.52
which played a significant role in landslide susceptibility
among all the factors (Pokharel and Thapa, 2019). The Rel-
ative Frequency (RF) is a ratio of the frequency of a data
point to the total size of the data set.

PR =
RFmax −RFmin

(RFmax −RFmin)min
(2)

where, PR=Predictor Rate, RFmax and RFmin are the
maximum and minimum Relative Frequency among classes
within a factor respectively. Finally, the landslide suscep-
tibility map is prepared by calculating Landslide Suscepti-
bility Index (LSI) using the relation depicted in Equation
(3).

LSI = ΣiPRi × FRi (3)

where FRi is the rating of each factor type and PRi is the
multiplier for each factor.

AUC (Area Under Curve) is widely used accuracy statis-
tics to predict the models in natural hazard assessment (Be-
gueria, 2006) and the rate obtained can explain how well the
model can predict the landslide (Fabbri et al., 1999). The

landslide susceptibility map prepared using training dataset
was validated using the testing data by preparing AUC.

3. Causative Factors
A range of factors and their combination may influence

the landslide occurrence. The selection of factors is a key
step in landslide susceptibility studies. Therefore, 12 land-
slide causative factors are selected for this study considering
field observations, data availability, and literature review.

1. Slope: As the slope angle increases, shear stress in
the soil or other un-consolidated material generally in-
creases (Raghuvanshi et al., 2015). The slope angle is
determined from a digital elevation model (DEM) with
a 12.5 m pixel. In our study, slope range of 30-40 ° and
40-50° together contribute to over 63% of demarcated
landslides.

2. Aspect: An aspect is the direction of the slope with
respect to the geographic North. Aspect associated
parameters such as rainfall, drying winds, and expo-
sure to sunlight may affect the occurrence of landslides
(Pradhan and Lee, 2010). In this study, maximum
landslides were observed in south facing slopes.

3. Elevation: Elevation affects landslides, with higher el-
evations having higher weathering (Varnes, 1984). In
this study, 1500-2000 m elevation range had the maxi-
mum number of observed landslides.

4. Geology: Lithology describes the physical charac-
teristics of a rock unit and lithological and struc-
tural changes alter the strength and permeability of
rocks and soils (Dai and Lee, 2002). The geologi-
cal characteristics of the study area generally are de-
scribed by lithology categorized into ten units: Higher
Himalayan Crystallines, Gneisses, Ulleri Formation,
Lakharpata Formation, Galyang Formation, Syangja
Formation, Ranimatta Formation, Ghanapokhara For-
mation, Kushma Formation, and Naudanda Formation.
In this study, Higher Himalayan Crystallines faced
maximum landslides.

5. Land use: Landslide occurrence as a response to land-
use changes has been studied over various periods
(Lambin et al., 2003). The land that is barren and
sparsely vegetated is prone to weathering, erosion, and
slope instability. For this study, the ’land use’ has been
partitioned into 6 categories: waterbodies, snow, for-
est, built up, barren land, and agriculture. Barren land
and agriculture have faced maximum landslides in the
area.

6. Distance to Road: Roads on slopes can disrupt sup-
port, causing strain and instability (Devkota et al.,
2013).
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Figure 4. Different causative factor maps used for landslide susceptibility analysis
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7. Distance to Drainage: Distance from drainage affects
slope stability due to water action and erosion (Bi-
jukchhen et al., 2013). The distance from the drainage
can impact on the stability of slopes as water acts on
the slopes and triggers erosion of the groundmass. In
this study, 0-50 m buffer from drainage has suffered
maximum landslides.

8. Plan Curvature: Plan curvature indicates slope shape,
and profile curvature influences water flow and erosion
(Ayalew and Yamagishi, 2005). In this study, concave
plan curvature has shown maximum landslides.

9. Profile Curvature: The profile curvature is the cur-
vature of the surface in the direction of the steepest
slope i.e., in the vertical plane of a flow line (Ayalew
et al., 2004). In this study, convex profile curvature has
shown maximum landslides.

10. Normalized difference Vegetation Index (NDVI): It
assesses vegetation richness, with higher values indi-
cating better vegetation (Gulácsi and Kovács, 2015).
In this study, barren land and Moderate vegetation have
shown maximum number of landslides.

11. Soil Type: Soil characteristics like depth, surface tex-
ture, depth texture, soil erosion, and hydraulic con-
ductivity play significant roles in causing landslides
(Sharma et al., 2012). In this study, silty clay textured
soil has shown maximum landslides.

12. Rainfall: Rainfall increases the weight of the soil
mass relative to normal conditions which reduces the
amount of movement resistance resulting in slides and
collapse (Dechkamfoo et al., 2022). In this study,
rainfall range of 1050-1150 mm/year has encountered
maximum landslides.

Different causative factor maps used for landslide sus-
ceptibility analysis in the study area in shown in Figure 4.

4. Result and Discussion
4.1. Susceptibility analysis

A higher FR indicates a stronger correlation between the
conditioning factor and landslides. Slopes of 40-50 ° have
the highest FR of 1.765, suggesting most landslides occur
there. South-facing slopes have an FR of 1.690, indicating
a higher landslide probability. Elevations between 1000-
1500 m have the highest FR (2.913) for landslides. The
geological unit of Gneisses is highly susceptible with an FR
of 2.13. ’Built up’ land use has a high FR of 2.703.

Furthermore, landslide probability is highest in areas
with drainage within 0-50 m (FR 1.373). Plan and pro-
file curvature do not significantly affect landslides as their
classes’ FR were found similar. Moderate vegetation (FR
1.63) dominates NDVI classes. Silty soil (FR 3.086) is

the most influential among soil types, while rainfall is cru-
cial between 1050-1150 m (FR 1.127). After FR calcula-
tions, Prediction rate (PR) of each factor is calculated which
shows ‘Land use’ class has the highest PR: 9.35 which sug-
gest that alterations in the land use in the study area have
significant role in landslide susceptibility among all the fac-
tors. Detailed calculations and summary are shown in Fig-
ure 5 and 6.

4.2. Susceptibility map

The initial step involves reclassifying the factor maps us-
ing RF and then rating them with Probability Ratio (PR).
A higher PR value indicates a more significant impact of
the conditioning factor on landslide occurrences. Among
these factors, ‘Land use’ is identified as the major fac-
tor on landslide occurrence, while ‘Plan curvature’ has the
least impact. To create the Landslide Susceptibility Map
(LSM), LSI was classified into five distinct zones using nat-
ural breaks classification in GIS: very low, low, moderate,
high, and very high susceptibility zones (Figure 7). A to-
tal of 9.77% of the area lies within the very high suscep-
tible zone, and accounts for 52.37% of the total landslides
area. On the other hand, the low and very low zones cover
a combined area of 50.81%, with only a 7.33% occurrence
of landslides. This demonstrates the model’s performance,
and a detailed breakdown is provided in Figure ??.

4.3. Validation

Area under curve (AUC) is a widely used accuracy statis-
tics to predict the models in natural hazard assessment and
the rate obtained can explain how well the model can pre-
dict the landslide (Chung and Fabbri, 2003). The landslide
susceptibility map prepared using training dataset was vali-
dated using the testing data by preparing AUC. For obtain-
ing the relative ranks, the calculated index value for each
cell in study area is sorted in descending order (Dahal and
Dahal, 2017). The success rate of 83.6% and prediction
rate of 83.1% were obtained for the landslide susceptibility
as shown in Figure 9 and Figure 10 respectively.

4.4. Discussion

A landslide susceptibility analysis was conducted by
combining various factors contributing to landslides using
an adjusted frequency ratio method. In this research, land
use (PR= 9.35) emerged as the most influential factor in
causing landslides within the study area. Several factors
contributing to changes in land use were identified, in-
cluding socioeconomic growth, climate change, inadequate
planning, and poor plan execution. Morrow et al. (2017)
have indicated that maintaining forest cover significantly re-
duces soil erosion rates. However, the conversion of barren
land and forests into agricultural areas in hilly regions has
accelerated soil erosion over time.
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Figure 5. Calculation tables for FR, RF, and PR

Additionally, a separate study in Wanzhou County,
China, investigated the individual and combined effects of
land use changes on slope stability and found that climate

change had a more detrimental impact on landslide sus-
ceptibility compared to the stabilizing effect of land use
changes. Consequently, the future stability of the study area
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Figure 6. Landslide affecting factors with their corresponding
Predication Rate (PR)

Figure 7. LSM of Jugal Rural Municipality

is expected to decrease (Guo et al., 2023).
Our study shows that among the land use classes, ‘agri-

Figure 8. Comparison of Landslide susceptibility zone (%) and
Landslide occurrence area (%)

Figure 9. AUC for success rate calculated using training data

Figure 10. AUC for prediction rate calculated using testing data

culture’, ‘built up’, and ‘barren land’ have high FR and
as a result, alterations in these factors will directly impact
the landslide susceptibility. As the needs of the popula-
tion evolve over time, there is a growing demand for essen-
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tial amenities such as food, housing, healthcare, education,
electricity, water supply, roads, and irrigation. To meet this
demand, numerous infrastructures have been constructed,
resulting in an increase in built-up areas and a reduction in
forested land. The decrease in forested land can also be
attributed to encroachment, which occurs due to weak en-
forcement and implementation of laws and policies.

5. Conclusion
Landslide susceptibility assessment of Jugal Rural Mu-

nicipality, Sindhupalchok has been carried out using Modi-
fied Frequency Ratio (FR) model considering landslide in-
ventory and conditioning factors of landslides for preparing
LSM. Twelve conditioning factors were collected and pre-
pared into a spatial database using GIS for evaluation of the
spatial relationship between these factors and landslide oc-
currences using modified Frequency Ratio (FR) model. The
success and prediction rate of 83.60% and 83.10%, respec-
tively, infer that FR model fits well for the study area. The
prediction rate indicated that ‘Land use’ factor is the most
significant factor in affecting the landslide susceptibility of
the study area. Critical facilities such as schools, shelters,
hospitals, bridges, and roads that lie in higher landslide sus-
ceptible zone should be prioritized, properly examined with
detail engineering and geotechnical consideration using ex-
perts to mitigate future losses. The prepared landslide sus-
ceptibility map of the region can be helpful for understand-
ing consequences of future land use changes and support
decision makers for land use planning and landslide risk
mitigation.
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