
DISTRIBUTION NETWORK RECONFIGURATION USING GENETIC
ALGORITHM FOR LOSS REDUCTION: A CASE STUDY OF KATUNJE

FEEDER, BHAKTAPUR

Rakesh Gwachha1 * , Tanus Bikram Malla1,2,3, Yogesh Bhattarai4, Rupesh Gautam1

1Department of Electrical Engineering, Khwopa College of Engineering, Tribhuvan University
2 Department of Electrical and Electronics Engineering, Kathmandu University

3 IEEE student member
4 Research and Development Unit, Khwopa College of Engineering, Tribhuvan University

Abstract

The power distribution system has difficulties with regard to power loss and unacceptable voltage drops as a result of the
rapidly expanding power system network, rising electrical energy consumption, and longer distances of power distribution.
A typical strategy to address the issues with the distribution system is to perform distribution system reconfiguration. The
study focuses on distribution feeder reconfiguration of the Katunje Feeder of Bhaktapur, Nepal where optimization problem
is formulated to minimize the system active power loss and investment cost of the system. Genetic algorithm is employed
in a co-simulation framework to solve the optimization problem where states of 26 different tie switches are to be altered
to achieve the desired optimum results. Two cases are formulated: in case I active power loss is assigned more weight than
investment cost whereas, in case II equal weights are assigned for active power loss and investment cost. The results showed
the reduction in active power loss and investment cost for both the cases. Case I resulted in more active power loss reduction
compared to case II, and case II resulted in more investment cost reduction compared to case I. From this, decision makers
can obtain insights in adopting one of the cases for distribution feeder reconfiguration based on technical consideration
(active power loss reduction) or economic consideration (investment cost reduction).

Keywords: Distribution network reconfiguration, Metaheuristic, Genetic algorithm, Co-simulation.

1. Introduction
Distribution system is a vital portion of an electrical

power system network that facilitates the delivery of elec-
trical power to the consumers. They comprise of main feed-
ers and laterals that constitute the link between the sub-
transmission power system and the consumers. In contrast
to the transmission system, distribution system operates at
low voltage and high current, Distribution networks also
have high value of resistance compared to the inductive re-
actance of the line resulting in high power loss and issues
with the voltage regulations (Naik et al., 2013). Further-
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more, with the rapid expansion of power system network,
increasing demand of electrical energy and increased length
of power distribution, power distribution system faces chal-
lenges with respect to power loss and unacceptable voltage
drops. General strategies adopted to address the issues re-
garding the power loss and voltage regulation in distribu-
tion networks include feeder reconfiguration, reinforcement
of feeders, construction of new substations, reactive power
compensation, installing voltage regulators, distributed gen-
eration (DG) hosting (Abdelkader and Elshahed, 2021; Gal-
lego Pareja et al., 2023).

Distribution network reconfiguration (DNR) is a method
of uncovering new network topology for the system in or-
der to minimize the system loss, enhance the voltage pro-
file and increase the reliability of the distribution system
thereby making the distribution system more efficient and
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robust (Razavi et al., 2022). The general strategy for the
DNR is to alter the states of the sectionalizing tie switches
that are normally open or closed in the system optimally.
However, to alter the states of the sectionalizing tie switches
only would be unpractical in the case of heavily loaded ra-
dial distribution systems (Salau et al., 2020). DNR is a
mathematical optimization problem, and to be precise, it is
a mixed integer non-linear (MINL) problem. Further, DNR
is a non-convex optimization problem with a large number
of possible network topologies resulting from the combina-
tion of each switch status in the system.

The optimization problem formulation for DNR consti-
tutes the constraints that reflect the limitations of the electri-
cal parameters and also the limitations regarding the topol-
ogy of the network. Thereby, metaheuristic optimization
algorithms could be suitable techniques to solve the non-
convexity and non-linear nature of the DNR problem. Ap-
plication of a meta-heuristic algorithm for solving such op-
timization problems eliminates the requirement of convex-
ifying the non-convex problem (Stojanović et al., 2017).
Several literature and research works underline the appli-
cation of meta-heuristic algorithms for solving optimiza-
tion problems related to DNR in a power system network
(Swarnkar et al., 2011; Helmi et al., 2021; Ganesh and Kan-
imozhi, 2018).

Genetic algorithm (GA) is a metaheuristic optimization
technique inspired by the process of natural selection. It is
extensively used in electrical engineering to tackle linear as
well as non-linear and non-convex optimization problems
(Hernández Valencia et al., 2021). Various research and
literature highlight the application of GA in order to solve
combinatorial optimization problems, such as a distribution
network reconfiguration problem and for solving associated
with the power system network (Abdelaziz, 2017; Gupta et
al., 2010; Huang, 2002; Zhu, 2002; D. et al., 2017). Further,
meta-heuristic algorithms, like GA, offers global search ca-
pability where it can explore a wide solution space and find
global optima. This is the requirement of the DNR prob-
lems where the optimization problem to be solved is com-
plex and multi-objective. Also, GA can handle both contin-
uous and discrete variables, provides optimization flexibil-
ity that can have potential benefits in formulating the opti-
mization problem based on desired requirements, and can
be scaled to large problems making it suitable to work with
DNR problems where the distribution system comprises of
number of nodes, lines and combination of network topolo-
gies (Zhu, 2002; Kahouli et al., 2021).

A non-dominated sorting genetic algorithm to solve the
multi-objective distribution network reconfiguration prob-
lem considering the minimization of real power losses, en-
hancement of voltage profile and load balancing is proposed
in (Eldurssi and O’Connell, 2015). The suggested algo-
rithm for the DNR problem in this case offers a number

of potential solutions for the reconfiguration, among which
the system planner must decide. Furthermore, various vari-
ants and hybrid application of the GA have been employed
for DNR problems. In Zhu (2002), the author presented a
refined GA for DNR where the main objective was to min-
imize the power loss. It was tested in IEEE 16 and IEEE
33 bus systems respectively where a radiation distribution
network load flow (RDNLF) method was also employed to
obtain accurate branch currents in the distribution network.
The refined GA in the study adopted an adaptive mutation
approach that prevents the premature convergence of the op-
timization problem, and the proposed algorithm was able to
reach global optimum value.

In a conventional GA approach for network reconfigura-
tion, huge amount of unfeasible solutions is generated after
crossover and mutation thereby resulting in low search ef-
ficiency. A genetic algorithm approach to the DNR prob-
lem motivated by graph theory is presented in (Zhang et
al., 2014). Here, a spanning tree is used to generate tie
branches, and each spanning tree is connected to a partic-
ular GA subgroup. The key benefit of this method is that
search efficiency is greatly increased and infeasible solu-
tions are not created during the reconfiguration phase of the
GA, and search efficiency is highly improved. Addition-
ally, in Gupta et al. (2010), the authors presented a method
for reconfiguration of radial distribution network in fuzzy
framework and is inspired by graph theory. The DNR prob-
lem addressed in the study is a multi-objective optimization
problem that makes use of an adaptive genetic algorithm.
The initial population for the genetic algorithm is created
using a heuristic approach, and the genetic operators are
modified with the aid of graph theory to produce viable indi-
viduals. The proposed method reduces computational bur-
den and the study examined the effectiveness of the method
on 70-bus test system and 136-bus real distribution system.

Distribution system faces reliability and power quality
issues in a deregulated and competitive environment where
the reliability of the distribution system involves the contin-
gencies associated with all terminals and protection equip-
ment and the distribution feeders (Brown et al., 2001). An
efficient GA approach to improve the reliability and power
quality of distribution networks using network reconfigura-
tion is proposed in Gupta et al. (2014). Here, objective func-
tion for the optimization is formulated by addressing power
quality and reliability issues for the reconfiguration prob-
lem. For this, several objectives such as feeder power loss,
system’s node voltage deviation, system’s average interrup-
tion frequency index, system’s average interruption unavail-
ability index and energy not supplied regarding the power
quality and reliability are taken into account. The efficacy
of the proposed method is tested on IEEE 33 bus and IEEE
69 bus system and the study highlights the effectiveness of
the proposed algorithm when compared to the existing GA
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based approaches. Additionally, an enhanced GA approach
for distribution network reconfiguration to address power
loss reduction and reliability improvement is presented in
Duan et al. (2015). The presented method has improved
crossover which is employed on IEEE 33-bus, IEEE 69-bus
and IEEE 136-bus radial distribution system, and the results
showed that the proposed method for DNR is computation-
ally fast with better accuracy compared to conventional ap-
proach. Also, the final optimal value obtained through the
enhanced GA ensured that the network topology remains
radial.

The study aims to perform distribution network recon-
figuration for Katunje feeder of Bahktapur, Nepa,l using
genetic algorithm. This study takes into account the mini-
mization of active power loss and investment cost for the re-
configuration problem of the distribution feeder. Two cases
are formulated for the re-configuration problem followed by
the analysis of the results obtained.

2. Methodology

Methodology section is divided into three sections. First
section covers the description of site for case study, while
other two sections deal with problem formulation and solu-
tion to the optimization problem. Their details are presented
in the forthcoming sections.

2.1. Study case selection

The study presents distribution feeder reconfiguration of
Katunje feeder at Bhaktapur substation, Nepal. This feeder
is located in urban part of Nepal and has huge possibilities
of re-routing. The specifications and a Geographical Infor-
mation System (GIS) file of the feeder were obtained from
Nepal Electricity Authority (NEA). The feeder begins from
Bhaktapur substation with elongation of around 20.53 Km
(calculated using GIS) with many branches making it as a
radial feeder in the base case. Throughout its length, the
total size of connected transformers is 8790 kVA.

The transformers around the vicinity of 50 meters are
lumped together into a single bus that results in 43 nodes
or bus in the distribution feeder with voltage level of 11
kV. The information of the bus is presented in the Table
1, followed by this the single line diagram (SLD) of the
distribution feeder originating from Bhaktapur substation as
shown in Figure 1.

With the observation from GIS map of the feeder, 26
possible routes for the distribution network reconfiguration
is obtained. All of these 26 possible routes are to be con-
nected by tie line switches and will be taken into account
for the optimization problem formulation of the study for
DNR. The information of the tie line switch is presented in
Table 2.
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Figure 1. Single line diagram of Katunje feeder

2.2. Problem formulation

Although there are 26 possible switches as seen from
GIS, it is not possible to close them all to re-route the power
because of its complexity in switching and also the invest-
ment cost. Therefore, the main problem here is to minimize
the active power loss as well as investment cost so that the
reconfigured network could be easily implemented in real
world scenario which would be technically and economi-
cally viable. For the formulation of the optimization prob-
lem, the objective is to minimize the system active power
loss and investment cost. The mathematical formulation of
the optimization problem for the distribution feeder recon-
figuration is presented from Equation (1) to (4). The active
power loss and investments costs are assigned with weight
for minimization problem formulation.

Here, the problem is subjected to a number of switches to
be closed which are bounded between 0 and 5 as shown in
the constraint of the optimization problem that is presented
in Equation (3). The upper value for a number of switches
to be closed is selected to be 5 to make the optimization
problem simpler and computationally efficient. The number
of switches to be closed belongs to the set of number of
possible tie switches (i.e. 26 switches).

Fobj = Minimize{F1 ×WL+ F2 ×WC} (1)

In Which,

[F1, F2] =

 1

Pbase

N(Br)∑
i=1

PLoss
i ,

1

CT

N(SC)∑
j=1

Cj

 (2)

Subjected to:
0 ≤ N(SC) ≤ 5 (3)

Such that,

N(SC) ∈ {TS1, TS2, TS3, ......TS26} (4)

Where,
Fobj is the objective function based on power loss and in-
vestment cost
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Table 1. Bus code number
Node Name Node Numbering
Bhaktapur Substation 1
Ittapako 2
Sallaghari Chowk 3
Sallaghari Pul 4
Katunje Dobato 5
Subrna Chowk 6
Shahara Shop Ind 7
Ghalante 8
Suryabinayak Chowk 9
Adarsha Chowk 10
Bagmati Cold Store 11
Bagmati Club 12
Arpan Deri Nera 13
Valley Poly Marse 14
Ibamura Hospital 15
Sallaghari Srijana Chaour 16
Sallaghari Tinkune 17
Himalayan Net Beer 18
Katunje Mata Ghar Mathi 19
Katunje Ukalo 20
Katunje Sushila Bhairab 21
Katunje Thapa Tole 22
Shrestha Woolen 23
Chundevi Mandir 24
Chundevi Height 25
Barahi Hall 26
Chundevi Police Beat 27
Army Barek Muni 28
Pandubazar Turture Dharo 29
Suryabinayak Army Barek 30
Suryabinayak Ukalo 31
Sipadol Forest office najik 32
Katunje Janasasthya Nera 33
Katunje Chauki 34
Kiwachowk Jane Bato 35
Katunje Ashami Tole 36
Subarneshwor Khane Pani 37
Bhulacha 38
Barahistha Chowk 39
Thapa Party Palace 40
Bhulancha 41
Kalancha 42
Jagati 43

PLoss
i is the active power loss at ith branch

Pbase is the total system active power loss at base case
N(Br) is the total branches in the network
WL is the weight of loss for optimization
Cj is the investment cost required for jth reconfigured line
CT is the total investment cost if all 26 switches are closed
N(SC) is the total number of switches to be closed

Table 2. Possible tie feeders’ configurations
From bus To bus Length(Km) Indication
2 15 0.32 TS1
15 4 0.23 TS2
15 5 0.36 TS3
15 6 0.44 TS4
16 23 0.24 TS5
16 17 0.38 TS6
22 35 0.34 TS7
5 28 1.10 TS8
5 20 0.35 TS9
20 34 1.05 TS10
21 34 0.33 TS11
6 28 0.89 TS12
40 31 0.47 TS13
40 13 0.74 TS14
40 11 0.75 TS15
40 30 0.75 TS16
40 10 0.84 TS17
32 14 0.64 TS18
8 39 0.26 TS19
8 40 0.53 TS20
7 27 0.10 TS21
25 28 0.33 TS22
28 37 0.72 TS23
42 10 0.37 TS24
42 11 0.43 TS25
11 43 0.31 TS26

WC is the weight of investment cost for optimization

2.3. Problem solving approach

The optimization problem formulated in the aforemen-
tioned section is a non-convex problem. A mathematical
optimization approach to the above problem would be com-
plex where relaxing the non-convex problem would result
in complexity of the problem in terms of problem formula-
tion and computation. Hence, meta-heuristic optimization
would be a viable option for solving the non-convex op-
timization problem (Aghay and Alqallaf, 2019). Genetic
algorithm (GA) is selected for the study to minimize the ac-
tive power loss and investment cost of the Katunje feeder for
distribution feeder reconfiguration. GA is a global search
algorithm that can find the best solution for given optimiza-
tion problem although the problem has multiple local min-
ima. Furthermore, GA is robust that can take into account a
wide variety of constraints, and fast that can solve problems
with reasonable computation time (McCall, 2005). The
flow chart of GA is presented in Figure 2. Solving problem
with GA includes three steps, in the beginning initialization
and chromosomes generation, then after cross-over and fi-
nally the mutation process. The initialization of population
size, number of generations and number of bits, cross-over
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probability and mutation probability, weightage for loss and
weightage for cost are performed in the primary step of the
algorithm. In the next step, generation of numbers of chro-
mosomes equals to number of population size with length
equal to number of bits is to be carried out. Here, number
of bits represents the tie switches to be closed. Addition-
ally, fitness value for all the chromosomes is to be calcu-
lated and minimum fitness values is saved as the global best
solution. Global best solution contains the switch numbers
to be closed, active power loss and investment cost. Fol-
lowed by this is reproduction stage that includes cross-over
and mutation. To reproduce the chromosomes, crossover
and mutation in accordance to the mutation probability is to
be performed for every generations. For each generation,
reproduction is to be carried out for number of times (i.e.
equals to the population size). For each reproduction, com-
putation of fitness value is to be carried out and compared
with previous global best value. If the new fitness value is
less than the global best value then global best value is to be
updated.

Start

Generate chromosomes as defined by population size and number of bits, 
Evaluate the fitness value for each chromosomes

Initialize population size, number of generations, cross-over and mutation
probability and number of bits

Save the minimum fitness value and the corresponding chromosome
as global best

Choose randomly a pair of chromosomes for cross-over and mutation,
perform cross-over and mutation to get new offspring

Evaluate fitness value for each offspring; update global best if new fitness
value is minimum than previous global best value

If iteration of j equals to
population size

Set iteration i=1 for number of generation

Set iteration j=1 for cross-over and mutation

If iteration of i equals to
number of generations

Stop

Yes

Yes

No

No

j=j+1

i=i+1

Figure 2. Flow chart of Genetic Algorithm

In order to calculate power loss, Digsilent Powerfactory
software was used. All the calculation except load flow was
performed in MATLAB. The investment cost to construct
per Km of distribution line using DOG conductor was taken
by consulting the NEA. The overall process for calculating
fitness value is shown in Figure 3.

Generate chromosomes in
MATLAB

Give signal  to PowerFactory
and wait signal from it

Compare fitness value and save
the minimum value as global

best

Reproduce: (Cross-over and
Mutation)

Read switch file and close the
tie-line switches as per file

Execute load flow 

Extract power loss and bus
voltages

Store power loss and voltages
in respective files

Give signal  to MATLAB and
wait a signal from it

Store chromosomes(i.e.
switches signal) in a file

Calculate investment cost for
closed tie lines, read loss file

and calculate fitness value

MATLAB DigSilent, Powerfactory

Figure 3. Block diagram of co-simulation between DiGSILENT
and MATLAB

In Figure 3, the real distribution feeder was modeled in
the Powerfactory software whereas MATLAB is used to cal-
culate the optimized value for the optimization problem us-
ing GA. The study presents a co-simulation framework with
DigSilent Powerfactory and MATLAB for the distribution
feeder reconfiguration where the objective function value
(i.e. active power loss values) is obtained from Powerfac-
tory and the optimization problem is solved in MATLAB.
All the possible tie lines (obtained from GIS) for reconfigu-
ration was connected using tie switches. The number of tie
switches to be closed was generated in the MATLAB and is
sent to PowerFactory software. In the same time, the invest-
ment cost required to construct the lines if those switches
are closed was calculated. In Powerfactory, the mentioned
switches were closed and load flow was carried out. Then,
active power loss and voltages at each bus were calculated
and sent to MATLAB. Using the active power loss and in-
vestment cost fitness value would be calculated using cost
and power loss weightage (WC and WL). The study is car-
ried out for two cases where each case is defined by its own
weights assigned for active power loss and investment cost
minimization problem.

3. Results
The optimization was carried out using a co-simulation

framework between MATLAB and DiGSILENT PowerFac-
tory. The co-simulation was performed in Intel core i5 pro-
cessor having 8 GB of RAM. Genetic Algorithm (GA) was
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used for solving the optimization problem by forming two
different cases (Case I and Case II) and the used parameters
for co-simulation are shown in Table 3. The co-simulation
was carried out for 100 generations with 30 independent
runs. The best fitness values after 100th generation for ev-
ery independent run for two cases is shown in the Figure
4.

Table 3. Parameters initialization for optimization
Parameters Name For Case I For Case II
Population size 30 30
Maximum number
of generations 100 100
Number of bits 5 5
Cross over probability 95% 95%
Mutation probability 5% 5%
WL & WC 70% & 30% 50% & 50%

Figure 4 shows the optimum fitness value of different
independent runs for both cases (i.e. case I and II). The
case I has its weightage assigned for active power loss and
investment cost as 0.7 and 0.3 respectively whereas, for case
II, the weight assigned for active power loss and investment
cost is 0.5 and 0.5 respectively. For case I, the best fitness
value out of 30 independent runs was found to be 0.507
and it was repeated 3 times. Whereas for case II, the best
fitness values were found to be 0.3947, and it was repeated
22 times.
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Figure 4. Best fitness values for different independent runs for two
cases

Although, repetition of best fitness values for two cases
differs, all of the values in each independent run for both
the cases could be assumed to be approximately equal. To
measure their central tendency, mean, median, standard de-
viation and mode were calculated.

The measurement of central tendency for 30 independent
runs in case I and case II is shown in Table 4. It is observed
that the value of mean is 0.5155 and 0.3925 for case I and
case II respectively. This the value of median is 0.5145 and

0.3947 for case I and case II respectively. Further, the values
of standard deviation for two case were 0.75% and 0.1% re-
spectively. It could be considered that the best fitness value
for case I differs more than case II from mean value. The
mode for different cases was also approximately equal to
mean and median. So, all the independent runs could be ap-
proximated as the optimum values, but selection of best out
of best value could result best minimization of the problem.

Table 4. Measurement of central tendency
Parameters For Case I For Case II
Mean 0.5155 0.3952
Median 0.5154 0.3947
Standard Deviation 0.0075 0.0010
Mode 0.5159 0.3947
Convergence time (minutes) 49.98 52.01

Out of 30 independent runs, the best fitness value was
observed in the 16th independent run for case I which is ap-
proximately around 0.5076. Similarly for case II, the best
fitness value was approximately around 0.3947. The av-
erage time for convergence of optimization for case I and
case II was around 49.98 minutes and 52.01 minutes respec-
tively. The convergence curve of GA optimization for dif-
ferent cases is presented in Figure 5. From this figure, it is
observed that the optimization was converged early before
20th generations.
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Figure 5. Convergence curve for two cases

The best out of best results was taken as the optimized
result and is tabulated in Table 5. For Case I, the fitness
value would be minimum if the tie-switches TS1, TS4, TS6,
TS20 & TS24 are closed keeping all other switches opened.
The power loss would be reduced to 346.49 kW with the
investment cost of 31.38 Lakhs NPR for reconfiguration.
Similarly for case II, just by closing TS1, TS20 & TS24
would yield the minimum fitness value. In this case, the
power loss could be reduced to 366.68 kW with just the
investment cost of NPR 18.71 Lakh .

The single line diagram for the reconfigured network for
case I is shown in Figure 6. The newly proposed line for
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Table 5. Optimized results for two cases
Results Case I Case II
TS to close TS1, TS4, TS6 TS1, TS20

TS20, TS24 TS24
Power loss (kW) 346.49 366.68
Cost (Lakh NPR) 31.38 18.71

reconfiguration for Katunje feeder is shown by red dotted
line. There would be five different loops in the feeder after
reconfiguration where the control mechanism of tie-feeders
for those loops is not presented in the study. The five tie-
feeders here are the feeders between Ittapako bus to Iba-
mura hospital bus of 0.32 Km, Ibamura hospital bus to Sub-
arna chowk bus of 0.44 Km, Sallaghari srijanagar chour bus
to Sallaghari tinkune bus is 0.38 Km, Ghalate bus to Thapa
party palace bus is 0.53 Km, and Kalancha bus to Aadarshar
chowk is 0.37 Km. The total length for reconfiguration is
around 2.04 Km.
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Figure 6. Reconfigured single line diagram for case I

Similarly, the single line diagram of reconfigured net-
work for case II is shown in Figure 7. Again the reconfig-
ured tie-feeders are shown by red dotted lines. These tie-
feeders are basically from Ittapako bus to Ibamura hospital
bus of 0.32 Km, Ghalate bus to Thapa party palace bus of
0.53 Km and Kalancha bus to Aadarshar chowk of 0.37 Km.
This case results the addition of around 1.22 Km tie-feeders
making the distribution lines having three loops.

After identifying the reconfiguration lines for case I and
case II, the feeder’s voltage profile was studied and com-
pared with base case. The load flow was performed using
DiGSILENT PowerFactory at base case (i.e. network with-
out any tie-feeders) and active power loss and voltage at
each node were observed. The active power loss at base
case was found to be 525.56 kW and minimum voltage to
be 0.919 p.u. at bus number 14, i.e. Valley Poly Marse bus.
The comparison of voltage profile for base case, of case I
and case II is shown in Figure 8. The minimum voltage was
found improved for both the cases. For case I, the minimum
voltage was at bus number 14, and it was 0.951 p.u. whereas
for case II, the minimum voltage is 0.944 p.u. in the same
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Figure 7. Reconfigured single line diagram for case II
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Figure 8. Voltage profile before and after re-configurations

4. Discussion
All the results obtained could be taken positive. The ac-

tive power loss after reconfiguration was reduced by around
34% and 30% of base case loss for case I and case II respec-
tively. The voltage profile of the feeder was also found to be
improved after reconfiguration in both the cases. Although
both cases could be chosen for reconfiguration, other pa-
rameters like cost and geography should be considered. If
technical complexity is the major concern, then it would be
better to choose case II which will form just three loops af-
ter reconfiguration. Also, investment cost for this case is
lesser than that for case I. If technical complexity is not the
major concern, then it would be better to choose case I, in
which five loops would be formed. The demerit of this case
is that, its startup cost is slightly expensive. Therefore, cases
should be chosen wisely because addition of more number
of tie-feeder would result in reduced active power loss, in-
creased investment cost and add more complexity in con-
trol.

JScE, Vol.10, 2023 Gwachha et al. - 45



5. Conclusion
The DNR was performed in Katunje Feeder which is

a radial feeder extended form Bhaktapur Substation. The
optimization problem was created with two different cases.
Case I was formulated by assigning 70% weightage for loss
and 30% for investment cost whereas case II by 50% each.
As an optimized result, 5 and 3 tie feeders were determined
for the first and second case respectively. Those tie feed-
ers are expected to be added in the network by selecting
any one of the cases mentioned above. For case I the to-
tal investment cost was found to be NPR. 38.31 Lakh and
NPR. 18.71 Lakhs for next case. The result for both the
cases could be assumed to be feasible in the sense that loss
was reduced by 34% and 30%. The study could be helpful
for decision makers while performing distribution feeder re-
configuration in which decision makers could adopt case I
or case II based on the technical or economic priorities.
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Hernández Valencia, J., López-Lezama, J., & Restrepo
Cuestas, B. (2021). Assessing the vulnerability of
power systems using multilevel programming: A
literature review. Revista Ingenierı́as Universidad
De Medellı́n, 20. https://doi.org/10.22395/rium.
v20n38a6

Huang, Y. (2002). Enhanced-genetic-algorithm-based fuzzy
multi-objective approach to distribution network
reconfiguration. IEE Proceedings-Generation,
Transmission and Distribution, 149(5), 615–620.

Kahouli, O., Alsaif, H., Bouteraa, Y., N., B. A., &
Chaabene, M. (2021). Power system reconfigura-
tion in distribution network for improving reliabil-
ity using genetic algorithm and particle swarm op-
timization. Applied Sciences, 11(7), 3092.

McCall, J. (2005). Genetic algorithms for modelling and op-
timisation. Journal of Computational and Applied

JScE, Vol.10, 2023 Gwachha et al. - 46

https://doi.org/https://doi.org/10.1016/j.asej.2020.09.024
https://doi.org/https://doi.org/10.1016/j.asej.2020.09.024
https://doi.org/https://doi.org/10.1016/j.eswa.2019.02.002
https://doi.org/https://doi.org/10.1016/j.eswa.2019.02.002
https://doi.org/10.1109/67.893355
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.07.036
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.07.036
https://doi.org/10.1109/TPWRS.2014.2332953
https://doi.org/10.1109/TPWRS.2014.2332953
https://doi.org/10.3390/su15010854
https://doi.org/10.3390/su15010854
https://doi.org/10.1049/iet-gtd.2010.0056
https://doi.org/10.1049/iet-gtd.2010.0056
https://doi.org/https://doi.org/10.1016/j.ijepes.2013.08.016
https://doi.org/https://doi.org/10.1016/j.ijepes.2013.08.016
https://doi.org/10.22395/rium.v20n38a6
https://doi.org/10.22395/rium.v20n38a6


Mathematics, 184(1), 205–222. https : / / doi . org /
https://doi.org/10.1016/j.cam.2004.07.034

Naik, S., Khatod, D., & Sharma, M. (2013). Optimal alloca-
tion of combined dg and capacitor for real power
loss minimization in distribution networks. Inter-
national Journal of Electrical Power & Energy
Systems, 53, 967–973. https://doi.org/https://doi.
org/10.1016/j.ijepes.2013.06.008

Razavi, S.-M., Momeni, H.-R., Haghifam, M.-R., &
Bolouki, S. (2022). Multi-objective optimization
of distribution networks via daily reconfigura-
tion. IEEE Transactions on Power Delivery, 37(2),
775–785. https://doi.org/10.1109/TPWRD.2021.
3070796

Salau, A. O., Gebru, Y. W., & Bitew, D. (2020). Optimal
network reconfiguration for power loss minimiza-
tion and voltage profile enhancement in distribu-
tion systems. Heliyon, 6(6), e04233. https : / /doi .
org/https://doi.org/10.1016/j.heliyon.2020.e04233
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